Repère: TPSP

Session: 2006

Durée

: 4 H

Page: 5/14

Coefficient: 4

PARTIE MÉCANIQUE, THERMODYNAMIQUE ET CHIMIE (durée conseillée 1 h 15)

LE MOTEUR DE STIRLING

Il n'est pas nécessaire d'avoir étudié le moteur de Stirling pour pouvoir traiter ce sujet. Des rappels théoriques et résultats intermédiaires sont fournis dans l'énoncé.

Partie 1 : Généralités sur les moteurs dithermes

Le moteur de Stirling est un système fermé échangeant du travail W avec l'extérieur, de la chaleur Q_c avec la source chaude à la température T_c et de la chaleur Q_f avec la source froide à la température T_f .

- 1.1 Compléter le schéma du document réponse en faisant apparaître, à l'aide de flèches, le sens des échanges d'énergie (W, Q_c, Q_f). En déduire le signe de chacun de ces échanges.
- 1.2 Donner la définition du rendement η du moteur de Stirling.

Partie 2: Étude d'un moteur de Stirling

Le moteur de Stirling est modélisé par un cycle à quatre transformations réversibles. Le gaz utilisé dans ce cycle est considéré comme parfait et sa quantité de matière (nombre de moles n) est constante puisque le système est fermé.

- Compression isotherme: (1→2) à la température T_f de la source froide. On passe alors du volume V₁ au volume V₂ tel que V₁ > V₂. Dans cette transformation, le gaz échange de la chaleur avec la source froide.
- Chauffage isochore: $(2 \rightarrow 3)$ jusqu'à la température T_c de la source chaude.
- <u>Détente isotherme</u>: $(3 \rightarrow 4)$ à la température T_c , jusqu'au volume initial. Dans cette transformation, le gaz échange de la chaleur avec la source chaude.
- Refroidissement isochore: $(4 \rightarrow 1)$ jusqu'à la température T_f .

Dans la suite du sujet on notera W_{12} , W_{23} , W_{34} et W_{41} les travaux échangés au cours des transformations $(1 \rightarrow 2)$, $(2 \rightarrow 3)$, $(3 \rightarrow 4)$, $(4 \rightarrow 1)$; on fera de même pour les quantités de chaleur.

- 2.1 Compléter le diagramme de Clapeyron fourni sur le document réponse en précisant :
 - les points (1, 2, 3, 4) du cycle;
 - le sens du parcours du cycle.
- 2.2 Quel échange d'énergie représente l'aire du cycle en coordonnées de Clapeyron?
- 2.3 Compléter le tableau du document réponse (page 8/14), en indiquant les éventuels calculs effectués.
- 2.4 A partir de l'expression générale du travail des forces pressantes entre un état initial i et un état final $f: W_{if} = \int_{-1}^{1} P.dV$, démontrer que l'expression du travail W_{12} , pour la compression isotherme,

s'exprime de la manière suivante : $W_{12} = n R T_f \ln \frac{V_1}{V_2}$, avec n le nombre de moles du gaz parfait.

Repère: TPSP Session: 2006 Durée : 4 H

Page: 6/14 Coefficient: 4

2.5 - De même on montre que $W_{34} = n R T_c \ln \frac{V_2}{V_1}$.

Quelle est la variation d'énergie interne ΔU_{34} pour cette dernière transformation? En déduire l'expression de la quantité de chaleur Q_{34} échangée avec la source chaude, en fonction de V_1 , V_2 , T_c , n et R.

- 2.6 Que valent les travaux W₂₃ et W₄₁, effectués pendant les transformations isochores ? Justifier votre réponse.
- 2.7 On montre que le travail effectué dans le cycle a pour expression : $W = n R \left(T_c T_f\right) \ln \frac{V_2}{V_i}$.

Sachant que la chaleur apportée au système pendant la phase de chauffage isochore $(2 \rightarrow 3)$ est entièrement récupérée durant la phase de refroidissement isochore $(4 \rightarrow 1)$ grâce à un échangeur thermique, on peut considérer que la chaleur Q_c n'est apportée au moteur que pendant la transformation $(3 \rightarrow 4)$, donc $Q_c = Q_{34}$.

Démontrer que le rendement du moteur de Stirling peut se mettre sous la forme : $\eta = 1 - \frac{T_f}{T_c}$ comme celui du moteur de Carnot.

<u>Partie 3</u>: <u>Applications numériques</u> Utiliser les valeurs numériques du document réponse.

- 3.1 Calculer le rendement du moteur de Stirling.
- 3.2 Calculer le travail échangé au cours d'un cycle. Interpréter le signe du résultat.
- 3.3 En déduire les quantités de chaleur Q_{34} et Q_{12} échangées respectivement avec la source chaude et la source froide au cours d'un cycle.

Donnée: $R = 8,31 \text{ J.mol}^{-1}.\text{K}^{-1}$.

	Académie :	Session:			
	Examen ou Concours			Série*:	_
	Spécialité/option*: Repère de l'épreuve :			preuve :	
38	Épreuve/sous-épreuve:				_
CAD	NOM:			-	
DANS CE CADRE	(en majuscules, suivi s'il y a lieu, du nom d Prénoms :	répouse)	N° du candidat		_
DAN	Né(e) le :	:	11 00 00 10 00	(le numéro est celui qui figure sur la	_
				convocation ou la liste d'appel)	
NE RIEN ÉCRIRE	*Uniquement s'il sagit d'un examen. Repère: TPSP Page: 7/14 (à ren	Session : 2006 DOCUMENT REPONS Idre obligatoirement avec	E	: : 4 H icient : 4	
	Schéma :	Source chaude			
	Diagramme de Clapeyron :	Moteur Thermique Source Froide		Milieu Extérieur	

B.T.S. TECHNIQUES PHYSIQUES POUR L'INDUSTRIE ET LE LABORATOIRE

	Académie :	Session:			
	Examen ou Concours			Série*:	
	Spécialité/option*:		Repère de l'épreuve :		
DRE	Épreuve/sous-épreuve :				
DANS CE CADRE	NOM : (en majuscules, sulvi s'il y a lieu, du nom d'é Prénoms :	pouse)	N° du candidat		
	Né(e) le :		,	(le numéro est celui qui figure sur la convocation ou la liste d'appel)	
NE RIEN ÉCHIRE		Session : 2006 OCUMENT REPONSE SUI dre obligatoirement avec la	TE	se : 4 H Ticient : 4	

Tableau:

	Etat 1	Etat 2	Etat 3	Etat 4
T (K)	273		823	
V (m ³)	2,00.10 ⁻³	2,86.10-4		
P (Pa)	100.10 ³	70.104		300.10 ³